ЧАСТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СТАВРОПОЛЬСКИЙ МЕДИКО – СОЦИАЛЬНЫЙ ИНСТИТУТ»

Рабочая программа дисциплины Б1.В.04 Клинические аспекты физической и коллоидной химии Часть, формируемая участниками образовательных отношений

Специальность 31.05.01 Лечебное дело Уровень высшего образования: специалитет; квалификация: врач-лечебник Форма обучения: очная Срок обучения: 6 лет Нормативно-правовые основы разработки и реализации рабочей программы дисциплины:

- 1) Федеральный государственный образовательный стандарт высшего образования специалитет по специальности 31.05.01 Лечебное дело, утвержденный Приказом Министра науки и высшего образования Российской Федерации от 12.08.2020 № 988.
- 2) Профессиональный стандарт «Врач-лечебник (врач-терапевт участковый)», утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 21 марта 2017 г. № 293н
 - 3) Общая характеристика образовательной программы.
 - 4) Учебный план образовательной программы.
 - 5) Устав и локальные акты Института.

1. Общие положения

1.1. Цель и задачи освоения дисциплины

1.1.1. Целью освоения учебной дисциплины Клинические аспекты физической и коллоидной химии является:

- приобретение студентами знаний о связях фундаментальных основ химии с проблемами клинических дисциплин.

1.1.2. Задачи, решаемые в ходе освоения программы дисциплины:

- формирование умений диагностировать заболевания и патологические состояния на основе лабораторно-инструментальных методов исследования.

1.2. Место дисциплины в структуре образовательной программы

Дисциплина Клинические аспекты физической и коллоидной химии изучается в 3 семестре и относится к части, формируемой участниками образовательных отношений Блока Б1. Является обязательной дисциплиной.

Общая трудоемкость дисциплины составляет 2 з.е.

Для успешного освоения настоящей дисциплины обучающиеся должны освоить следующие дисциплины: биология, биоэтика, гистология, эмбриология, цитология, иностранный язык, история медицины, латинский язык, физика, математика, химия.

Знания, умения и опыт практический деятельности, приобретенные при освоении настоящей дисциплины, необходимы для успешного освоения дисциплин: анатомия, биологическая химия, гигиена, медицинская информатика, патологическая физиология, фармакология.

1.3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы:

Код и наименован ие компетенци и выпускника	индикат ора достиже	Планируемые результаты обучения по дисциплине (модулю), практике
Профессиона	альные ко	мпетенции
ПК-5	ИПК-	Знать:
Способен к	5.2	- правила техники безопасности при работе в химической
использован	Умеет	лаборатории;
ию	обоснов	- связь фундаментальных основ химии с проблемами
основных	ывать	клинических дисциплин;
физико-	целесо	

химически	образн	- теоретические основы адсорбции на жидкой и твердой
х,	ость	поверхностях;
математиче	примен	- классификацию дисперсных систем и лекарственных
ских и	ения	средств;
иных	тех или	- лиофильные и лиофобные коллоидные дисперсные системы;
естественн	иных	- лигандообменные равновесия и процессы;
онаучных	методо	- гетерогенные равновесия и процессы, протекающие в
понятий и	В	организме в норме и патологии.
методов	исслед	Уметь:
при	ования,	- пользоваться учебной и научной литературой,
решении	основы	информационными ресурсами сети Интернет для
профессио	ваясь	профессиональной деятельности;
нальных	на	- готовить растворы и оценивать их физико-химические
задач	понима	свойства;
	нии	- оценивать физико-химические свойства различных
	лежащ	дисперсных систем.
	их в их	Владеть:
	основе	- работой на лабораторных приборах: рН-метр, кондуктометр,
	принци	спектрофотометр;
	пов	- лабораторными методами идентификации и методами
		оценки чистоты и доброкачественности лекарственных
		препаратов;
		- основами диагностики заболеваний и патологический
		состояний на основе лабораторно - инструментальных методов
		исследования.
		·

2. Формы работы обучающихся, виды учебных занятий и их трудоёмкость

Объём дисциплины	Всего часов	3 семестр часов
Общая трудоемкость дисциплины, часов	72	72
Контактная работа обучающихся с преподавателем (по видам учебных занятий) (всего) (аудиторная работа):	52	52
Лекционные занятия (всего) (ЛЗ)	18	18
Занятия семинарского типа (всего) (СТ)	34	34
Самостоятельная работа (всего) (СРС)	20	20
Вид промежуточной аттестации обучающегося (зачет)	-	-

3. Содержание дисциплины (модуля)

3.1. Содержание разделов (модулей), тем дисциплины (модуля)

№	Шиф	Наименовани	Содержание раздела и темы в дидактических
п/	p	е раздела	единицах
П	комп	(модуля),	
		темы	

	етенц	дисциплины	
	ии	(модуля)	
1	2	3	4
1			4
1.	ПК-5.	Состав и	Протолитические реакции в живом организме,
		свойства	вызывающие нарушение кислотно-щелочного равновесия.
		биологически	Кислотно-основные свойства важнейших а-аминокислот,
		х жидкостей	кислотные а-аминокислоты; основные а-аминокислоты.
		организма	Протолитические процессы, используемые для коррекции
		ротолитическ	патологических состояний и диагностики последних.
		ие равновесия	Буферные системы организма: белковая,
		и процессы.	гидрокарбонатная, гемоглобиновая, оксигемоглобиновая,
		Буферные	аммиачная. Механизм их действия, расчет величины рН.
		системы в	Взаимосвязь буферных систем организма человека.
		живом	Ацидемия и алкалиемия, ацидоз и алкалоз. Коррекция
		организме.	кислотно-щелочного состояния организма
2.	ПК-5.	Лигандообме	Лигандообменные равновесия и процессы, протекающие в
		нные	организме в норме и патологии. Гемоглобин, миоглобин,
		равновесия и	метгемоглобин, их роль в живом организме.
		процессы,	Металлолигандный гомеостаз и его нарушения,
		протекающие	метаболизм организма. Комплексоны - лекарственные
		в организме в	препараты. Гетерогенные процессы, протекающие в
		норме и	организме в норме и патологии. Особенности образования
		патологии.	костной ткани и камнеобразования; способы выделения
		Гетерогенные	биосубстратов из биожидкостей, влияние процессов
		равновесия и	растворения и расслоения на жизнедеятельность клетки.
		процессы.	Гетерогенные процессы, используемые для коррекции
			патологических состояний и диагностики последних

4. Тематический план дисциплины

4.1. Тематический план контактной работы обучающихся с преподавателем (ЛЗ — занятия лекционного типа, СТ — занятия семинарского типа, СЗ — семинарские занятия)

№ п/п	Вид ы уче бны х зан яти й	Период обучения (семестр). Порядковые номера и наименование разделов (модулей) (при наличии). Порядковые номера и наименование тем (модулей) контактной модулей. Темы учебных занятий.		
			ЛЗ	CT
		3 семестр		
1.	ЛЗ	Раздел 1. Состав и свойства биологических жидкостей организма ротолитические равновесия и процессы. Буферные системы в живом организме.	9	
2.	СЗ	Раздел 1. Состав и свойства биологических жидкостей организма ротолитические равновесия и процессы. Буферные системы в живом организме.		16

		протекающие в организме в норме и патологии. Гетерогенные равновесия и процессы.		
4.	C3	Раздел 2. Лигандообменные равновесия и процессы,		18
		Гетерогенные равновесия и процессы.		
		протекающие в организме в норме и патологии.		
3.	ЛЗ	Раздел 2. Лигандообменные равновесия и процессы,		

4.2. Содержание самостоятельной работы обучающихся

№ п/п	Наименование раздела (модуля), тема дисциплины (модуля).	Содержание самостоятельной работы обучающихся	Всего часов
1	2	3	4
1.	Раздел 1. Состав и свойства биологических жидкостей организма ротолитические равновесия и процессы. Буферные системы в живом организме.	Работа с учебниками, учебнометодическими пособиями, подготовка к тестам, подготовка к занятиям, работа с электронными демонстрационными материалами	10
2.	Раздел 2. Лигандообменные равновесия и процессы, протекающие в организме в норме и патологии. Гетерогенные равновесия и процессы.	Работа с учебниками, учебнометодическими пособиями, подготовка к тестам, подготовка к занятиям, работа с электронными демонстрационными материалами	10
Итого:			

5. Организация текущего контроля успеваемости обучающихся

- 5.1. Задачи, формы, методы проведения текущего контроля указаны в п.
- 2. Положения «О текущем контроле успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета в Частное образовательное учреждение высшего образования «Ставропольский медикосоциальный институт»
- 5.2. Оценка результатов освоения обучающимся программы дисциплины в семестре осуществляется преподавателем на занятиях по традиционной шкале оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».
- 5.3. Критерии оценивания результатов текущей успеваемости обучающегося по формам текущего контроля успеваемости обучающихся.

Текущий контроль успеваемости проводится в следующих формах: учет активности, опрос устный, опрос письменный, решение практической (ситуационной) задачи.

5.3.1. Критерии оценивания устного опроса в рамках текущего контроля успеваемости обучающегося.

По результатам устного опроса выставляется:

- а) оценка «отлично» в том случае, если обучающийся:
- выполнил задания, сформулированные преподавателем;

- демонстрирует глубокие знания по разделу дисциплины (в ходе ответа раскрывает сущность понятий, явлений, принципов, законов, закономерностей, теорий, грамотно использует современную научную терминологию);
- грамотно и логично излагает материал, дает последовательный и исчерпывающий ответ на поставленные вопросы;
 - делает обобщения и выводы;
 - Допускаются мелкие неточности, не влияющие на сущность ответа.
 - б) оценка «хорошо» в том случае, если обучающийся:
 - выполнил задания, сформулированные преподавателем;
- демонстрирует прочные знания по разделу дисциплины (в ходе ответа раскрывает сущность понятий, явлений, принципов, законов, закономерностей, теорий, грамотно использует современную научную терминологию);
- грамотно и логично излагает материал, дает последовательный и полный ответ на поставленные вопросы;
 - делает обобщения и выводы;
- Допускаются мелкие неточности и не более двух ошибок, которые после уточнения (наводящих вопросов) обучающийся способен исправить.
 - в) оценка «удовлетворительно» в том случае, если обучающийся:
 - частично выполнил задания, сформулированные преподавателем;
- демонстрирует знания основного материала по разделу дисциплины (в ходе ответа в основных чертах раскрывает сущность понятий, явлений, принципов, законов, закономерностей, теорий, использует основную научную терминологию);
 - дает неполный, недостаточно аргументированный ответ;
 - не делает правильные обобщения и выводы;
 - ответил на дополнительные вопросы;
- Допускаются ошибки и неточности в содержании ответа, которые исправляются обучающимся с помощью наводящих вопросов преподавателя.
 - г) оценка «неудовлетворительно» в том случае, если обучающийся:
- частично выполнил или не выполнил задания, сформулированные преподавателем;
- демонстрирует разрозненные знания по разделу дисциплины (в ходе ответа фрагментарно и нелогично излагает сущность понятий, явлений, принципов, законов, закономерностей, теорий, не использует или слабо использует научную терминологию);
- допускает существенные ошибки и не корректирует ответ после дополнительных и уточняющих вопросов преподавателя;
 - не делает обобщения и выводы;
 - не ответил на дополнительные вопросы;
 - отказывается от ответа; или:
- во время подготовки к ответу и самого ответа использует несанкционированные источники информации, технические средства.

5.3.2. Критерии оценивания результатов тестирования в рамках текущего контроля успеваемости обучающегося:

Оценка	Процент правильных	
	ответов	
2 (неудовлетворительно)	Менее 70%	
3 (удовлетворительно)	70-79 %	
4 (хорошо)	80-89 %	
5 (удовлетворительно)	90-100 %	

6. Организация промежуточной аттестации обучающихся

Форма и порядок проведения промежуточной аттестации указаны в п. 3, 4 Положения «О текущем контроле успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования программам бакалавриата, программам специалитета в Частное образовательное учреждение высшего образования «Ставроопольский медико-социальный институт».

6.1. Форма промежуточной аттестации согласно учебному плану - зачет.

Зачет, зачет с оценкой по дисциплине проводится в два этапа: первый этап в виде диагностической работы (тестовой форме), второй - в форме, определяемой преподавателем (собеседование, письменная работа, выполнение практического задания и т.д.).

Для перехода на второй этап необходимо в диагностической работе правильно ответить на 70 % и более тестовых заданий. Тем самым возможно набрать от 61 до 70 баллов - базовый уровень положительной оценки согласно условиям (Менее 60 баллов — неудовлетворительно; 61-70 баллов - удовлетворительно 71-90 баллов - хорошо; 91-100 баллов- отлично) Положительная оценка по результатам промежуточной аттестации (зачета) выставляется только при условии прохождения диагностической работы

- 6.2. Перечень вопросов для подготовки к промежуточной аттестации:
- 1. Внутренняя энергия и энтальпия. Процессы при постоянных объёме и давлении. Теплота и работа. Первый закон термодинамики. Работа расширения идеального газа в разных процессах. Стандартные условия в термодинамике. Тепловой эффект химической реакции в разных условиях. Закон Гесса и следствия из него.
- 2. Теплоёмкость: малярная, удельная, истинная, средняя. Теплоёмкость при постоянном давлении и при постоянном объёме. Зависимость теплоёмкости от температуры. Зависимость теплового эффекта от температуры.
- 3. Энтропия и вероятность. Уравнение Больцмана. Термодинамические потенциалы. Условия самопроизвольного протекания процессов и достижения равновесия.
- 4. Термодинамика химического равновесия. Понятие химического равновесия. Химический потенциал. Константы равновесия Кр и Кс.

Уравнение изотермы, изобары и изохоры химической реакции. Зависимость константы равновесия от температуры. Смещение химического равновесия. Правило Ле Шателье-Брауна. Реальные газы.

- 5. Поправило фаз Гиббса. Понятия фазы, компонента, степени свободы. Фазовые равновесия в однокомпонентных системах. Диаграмма состояния воды.
- 6. Фазовые диаграммы плавкости двухкомпонентных систем с химическими соединениями. Число фаз, находящихся в равновесии в разных точках. Число степеней свободы системы,
- 7. Фазовые диаграммы плавкости двухкомпонентных систем для компонентов, образующих растворы в твёрдом и жидком состояниях. Фазовые диаграммы испарения для неограниченно смешивающихся жидкостей и не образующих азеотропов. Число фаз и число степеней свободы системы в разных точках.
- 8. Экстракция. Распределение третьего компонента между двумя несмешивающимися жидкостями. Коэффициент распределения и факторы, влияющие на него. Степень извлечения растворённого вещества при экстракции.
- 9. Общая характеристика растворов. Понятия раствора, растворителя, растворённого вещества. Межмолекулярное взаимодействие. Электрический момент диполя, диэлектрическая проницаемость. Термодинамика процесса растворения. Растворы жидкость-газ. Закон Генри и следствия из него.
- 10. Растворы твёрдых веществ в жидкостях. Свойства разбавленных растворов. Осмос и осмотическое давление. Закон Вант-Гоффа. Температуры замерзания и кипения разбавленных растворов. Второй закон Рауля. Криоскопические и эбуллиоскопические постоянные, их физический смысл. Пределы применимости законов.
- 11. Электропроводность растворов электролитов. Удельная и молярная электропроводности, зависимость от концентрации. Подвижность ионов. Аномальная подвижность водородных и гидроксид-ионов. Уравнение Аррениуса для растворов электролитов. Закон Кольрауша.
- 12. Фазовые диаграммы плавкости двухкомпонентных систем с простой эвтектикой. Эвтектическая точка, температура, состав. Кривые ликвидуса и солидуса; число фаз, находящихся в равновесии в разных точках. Число степеней свободы. Термический анализ.
- 13. Кинетическая классификация химических реакций: по молекулярности, по кинетическому порядку, на гомогенные и гетерогенные, на гомофазные и гетерофазные. Понятие элементарного акта химического взаимодействия. Простые и сложные реакции.
- 14. Растворы электролитов. Изотонический коэффициент и его связь со степенью диссоциации. Теория электролитической диссоциации и пределы её применяемости. Теория сильных электролитов. Активность ионов и коэффициент активности.

- 15. Стеклянный электрод. Факторы, влияющие на водородную функцию стеклянного электрода. Уравнение потенциала. Электроды в лабораторных условиях и промышленности.
- 16. Классификация электродов: I и II рода, газовые, окислительновосстановительные.
 - 17. Скачки потенциалов на границе фаз. ЭДС гальванического элемента.
 - 18. Гальванический элемент. Законы Фарадея.
 - 19. Строение ДЭС, условия его возникновения. Теория ДЭС.
 - 20. Поверхностно-активные вещества. Правило Траубе.
- 21. Классификация сорбционных процессов. Природа сорбционных сил. Адсорбция на поверхности раздела раствор-газ. Уравнение Гиббса. Поверхностно-активные вещества.
- 22. Классификация сорбционных процессов. Адсорбция газов и паров на твёрдых телах. Изотермы адсорбции Лэнгмюра. Уравнение Фрейндлиха.
- 23. Особенности и классификация каталитических процессов. Автокатализ. Гетерогенный катализ. Роль адсорбции при катализе. Промотирование. Теории гетерогенного катализа.
- 24. Особенности и классификация каталитических процессов. Ингибиторы. Промоторы. Автокатализ. Гомогенный катализ, кислотно-основный катализ. Теория промежуточных продуктов в гомогенном катализе.
- 25. Влияние температуры на скорость химической реакции. Активные («горячие») молекулы, Энергия активации. Теория переходного состояния и метод активированного комплекса Эйринга и Поляни. Уравнение Аррениуса.
- 26. Понятие кинетического порядка химической реакции. Реакции первого, второго и псевдопервого порядков. Константы скорости реакций, их размерность. Понятие о времени полупревращения.
 - 27. Классификация коллоидных систем.
 - 28. Методы получения коллоидных систем.
 - 29. Методы очистки коллоидных систем.
 - 30. Молекулярно-кинетические свойства коллоидных систем.
 - 31. Оптические свойства коллоидных систем.
 - 32. Оптические свойства коллоидных систем.
 - 33. Электрокинетические свойства коллоидных систем.
 - 34. Строение коллоидной частицы. Электрокинетический потенциал.
 - 35. Коагуляция коллоидов
- 7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в разработке «Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине».
- 7.1. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (по периодам освоения образовательной программы) согласно п. 1.3. настоящей рабочей программы дисциплины.

8. Методические указания обучающимся по освоению дисциплины (модуля)

Обучение складывается из аудиторных занятий, включающих занятия лекционного типа, занятия семинарского типа (семинарские занятия), самостоятельной работы, а также промежуточного контроля. В учебном процессе используются активные и интерактивные формы проведения занятий (компьютерных симуляций, деловых и ролевых игр решение ситуационных задач, групповых дискуссий) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков обучающихся.

Самостоятельная работа студентов подразумевает подготовку к семинарским занятиям и включает изучение специальной литературы по теме (рекомендованные учебники, методические пособия, ознакомление с материалами, опубликованными в монографиях, специализированных журналах, на рекомендованных сайтах).

Работа с учебной литературой рассматривается как вид учебной работы по дисциплине и выполняется в пределах часов, отводимых на её изучение. При изучении учебной дисциплины необходимо использовать философскую литературу и освоить практические умении полемизировать, доказывать собственную точку зрения. Семинарские занятия проводятся в виде диалога, беседы, демонстрации различных философских подходов к обсуждаемым проблемам и решения ситуационных задач, ответов на тестовые задания.

Каждый обучающийся обеспечивается доступом к библиотечным фондам института, а также к электронным ресурсам.

Самостоятельная работа с литературой, написание рефератов формируют способность анализировать философские, медицинские и социальные проблемы, умение использовать на практике гуманитарные знания, а также естественно - научных, медико-биологических и клинических наук в различных видах профессиональной и социальной деятельности.

Различные виды учебной работы, включая самостоятельную работу студента, способствуют овладению культурой мышления, письменной и устной речи; развитию способности логически правильно оформить работы; формированию результаты системного подхода анализу К гуманитарной И медицинской информации, восприятию инноваций; формируют способность готовность самосовершенствованию, самореализации, личностной и предметной рефлексии. Различные виды учебной деятельности формируют способность в условиях развития науки и практики к переоценке накопленного опыта, анализу своих возможностей, умению приобретать новые знания, использовать различные формы обучения, информационно-образовательные технологии.

- 9. Учебно-методическое, информационное и материально-техническое обеспечение дисциплины (модуля)
- 9.1. Основная и дополнительная литература по дисциплине (модулю):

Основная литература:

	Литература	Режим доступа	
		к электронному	
		ресурсу	
1.	Физическая и коллоидная химия / "А. П. Беляев, В. И. Кучук; под ред. А. П. Беляева" - Москва: ГЭОТАР-Медиа, 2014 752 с.	по личному логину и	
2.	Физическая химия: учебник / Харитонов Ю. Я Москва: ГЭОТАР- Медиа, 2013 608 с	паролю в электронной	
3.	Коллоидная химия. Физическая химия дисперсных систем: учеб. для студентов учреждений высш. проф. образования, обучающихся по специальности 060301. 65 "Фармация" по дисциплине "Физ. и коллоид. химия" / Ершов Ю. А Москва: ГЭОТАР-Медиа, 2013 352 с.	библиотеке: ЭБС Консультант студента	

Дополнительная литература:

	Литература	Режим доступа к электронному ресурсу
4.	Физическая и коллоидная химия. Задачник: учебное пособие для вузов / А. П. Беляев, А. С. Чухно, Л. А. Бахолдина, В. В. Гришин; под ред. А. П. Беляева Москва: ГЭОТАР-Медиа, 2023 288 с.	по личному логину и паролю в
5.	Физическая и коллоидная химия. Практикум обработки экспериментальных результатов: учеб. пособие / Беляев А. П Москва: ГЭОТАР-Медиа, 2015 112 с.	электронной библиотеке: ЭБС Консультант студента

9.2. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 1. Режим доступа к электронному ресурсу: по личному логину и паролю в электронной библиотеке: ЭБС Консультант студента.
- 2. Система электронного обучения (виртуальная обучающая среда «Moodle».
 - 3. Федеральный портал Российское образование http://www.edu.ru
 - 4. Научная электронная библиотека http://www.elibrary.ru
- 5. Федеральная электронная медицинская библиотека (ФЭМБ) http://www.femb.ru

- 6. Медицинская on-line библиотека Medlib: справочники, энциклопедии, монографии по всем отраслям медицины на русском и английском языках http://med-lib.ru
- 7. ИС «Единое окно доступа к образовательным ресурсам» предоставляет свободный доступ к каталогу образовательных интернетресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования http://window.edu.ru
- 8. Медицинская литература: книги, справочники, учебники http://www.booksmed.com
 - 9. Публикации BO3 на русском языке https://www.who.int
- 10. Digital Doctor Интерактивное интернет-издание для врачей интернистов и смежных специалистов https://digital-doc.ru
 - 11. Русский медицинский журнал (РМЖ) https://www.rmj.ru

Перечень информационных и иных образовательных технологий, используемых при осуществлении образовательного процесса:

- 1. Автоматизированная образовательная среда института.
- 2. Операционная система Ubuntu LTS
- 3. Офисный пакет «LibreOffice»
- 4. Firefox

9.3 Материально-техническое обеспечение

Помещение (учебная аудитория) для проведения занятий лекционного типа, занятий семинарского типа (семинарских занятий), для проведения групповых консультаций, индивидуальных консультаций, для текущего контроля и промежуточной аттестации, предусмотренных программой специалитета, оснащенное оборудованием и техническими средствами обучения: парты, стулья обучающихся, стол преподавателя, доска маркерная, стул преподавателя, APM преподавателя: проектор, экран, компьютер (монитор, системный блок, клавиатура, мышь), бактерицидный облучатель воздуха рециркуляторного типа.

Шкаф вытяжной, шкаф для лабораторной посуды, шкаф для химических реактивов.

Колба коническая, капельница-дозатор, набор склянок для растворов реактивов, пробирка ПХ-14, спиртовка лабораторная литая, стакан химический, штатив для пробирок 10 гнезд (полиэт.), воронка d=75 мм ПП, палочка стеклянная, набор № 1 В «Кислоты», набор № 3 ВС «Щелочи», набор № 5 С «Органические вещества», набор № 6 С «Органические вещества», набор № 12 ВС «Неорганические вещества», набор № 13 ВС «Галогениды», набор № 14 ВС «Сульфаты, сульфиты», набор № 16 ВС «Металлы, оксиды», набор № 17 С «Нитраты» (серебра нитрат -10 гр), набор № 20 ВС «Кислоты»

Цифровое образовательное приложение «Химия. Виртуальная лаборатория. Задачи. Тренажеры. Тесты».

Каждый обучающийся в течение всего периода обучения обеспечен индивидуальным неограниченным доступом к электронной информационно-образовательной среде института из любой точки, в которой имеется доступ к информационно-телекоммуникационной сети «Интернет» (далее - сеть «Интернет») как на территории института, так и вне ее.

Электронная информационно-образовательная среда института обеспечивает:

- доступ к учебному плану, рабочей программе дисциплины, электронным учебным изданиям и электронным образовательным ресурсам, указанным в рабочей программе дисциплины;
- формирование электронного портфолио обучающегося, в том числе сохранение его работ и оценок за эти работы.

Помещение (учебная аудитория) для самостоятельной работы обучающихся оснащено компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду Института.

Институт обеспечен необходимым комплектом программного обеспечения.

Обучающимся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам.

Обучающиеся из числа инвалидов и лиц с ОВЗ обеспечены печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.